Bone nanostructure near titanium and porous tantalum implants studied by scanning small angle x-ray scattering.
نویسندگان
چکیده
Bone sections including either titanium or porous tantalum implant devices used for interbody spinal fusion were investigated with position-resolved small angle X-ray scattering (sSAXS). The samples were obtained from six-month-old pigs that had undergone surgery three months prior to sacrifice. The aim of the study was to explore the possibility of using sSAXS to obtain information about thickness, orientation and shape/arrangement of the mineral crystals in bone near the implant surfaces. Detailed sSAXS scans were carried out in two different regions of bone adjacent to the implant in each of the implant samples. In the implant vicinity the mineral crystals tended to be aligned with the surface of the implants. The mean crystal thickness was between 2.1 and 3.0 nm. The mineral crystal thickness increased linearly with distance from the implant in both regions of the porous tantalum implant and in one of the regions in the titanium sample. In the second region of the titanium sample the thickest mineral crystals were found close to the implant surface. The observed differences in mineral thickness with distance from the implant surfaces might be explained by differences in mechanical load induced by the implant material and the geometrical design of the implant. The study shows that sSAXS is a powerful tool to characterize the nanostructure of bone near implant surfaces.
منابع مشابه
Synthesis and Characterization of Highly Porous TiO2 Scaffolds for Bone Defects
The purpose of this study was to fabricate and investigate the highly porous structure using titanium dioxide, which is a candidate for bone defect repairing. For this purpose, TiO2 scaffolds were synthesized using titanium butoxide, Pluronic F127 surfactant, and polyurethane foam blocks. Therefore, a colloid includes titanium butoxide and F127 and the polyurethane foams were immersed in it. Th...
متن کاملThe Effect of Trabecular Metal Porous Surface on Gap Healing and Bone Ingrowth Fixation in a Canine Total Hip Model
Introduction An exciting approach to reducing aseptic loosening of cementless implants is the stimulation and acceleration of bone ingrowth into the porous coatings of the implants. Improved fixation of components is an important factor for long term success of total hip and total knee replacement. While one method of stimulating bone formation utilizes biological agents such as BMP-2 or OP-1. ...
متن کاملBiocompatibility and osteogenic properties of porous tantalum
Porous tantalum has been reported to be a promising material for use in bone tissue engineering. In the present study, the biocompatibility and osteogenic properties of porous tantalum were studied in vitro and in vivo. The morphology of porous tantalum was observed using scanning electron microscopy (SEM). Osteoblasts were cultured with porous tantalum, and cell morphology, adhesion and prolif...
متن کاملApplication of small angle X-ray scattering (SAXS) for differentiation between normal and cancerous breast tissues
ABSTRACT Background: Coherent scattering leads to diffraction effects and especially constructive interferences. Theseinterferences carry some information about the molecular structure of the tissue. As breast cancer isthe most widespread cancer in women, this project evaluated the application of small angleX-ray scattering (SAXS) for differentiation between normal and cancerous breast tissues....
متن کاملPorous Tantalum Coatings Prepared by Vacuum Plasma Spraying Enhance BMSCs Osteogenic Differentiation and Bone Regeneration In Vitro and In Vivo
Tantalum, as a potential metallic implant biomaterial, is attracting more and more attention because of its excellent anticorrosion and biocompatibility. However, its significantly high elastic modulus and large mechanical incompatibility with bone tissue make it unsuitable for load-bearing implants. In this study, porous tantalum coatings were first successfully fabricated on titanium substrat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European cells & materials
دوره 12 شماره
صفحات -
تاریخ انتشار 2006